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Abstract--A simulation model was developed to analyze the hydrodynamics of dispersions in agitated batch 
and continuous systems. The model enables the drop size distribution and average drop size to be calculated 
from given physical and operating properties of the system. Agreement between calculated and experimental 
results for two-phase liquid-liquid systems is satisfactory. The extension of the model to three-phase, liquid- 
liquid-solid, systems enables the hydrodynamics of crystallization in dispersions to be described, while 
accounting for the kinetics of nucleation and crystal growth. Size distributions and average sizes of the free 
drops, the crystals and the conglomerates (mother liquor containing crystals) can be simultaneously 
calculated. However, due to the limited data available, comparison was restricted to the experimental system 
of aqueous Na2SO, dispersed in kerosene. Additional correlations relating the functional dependence to the 
various parameters in three-phase systems are required before a general predictive model for three-phase 
systems can be realized. 

I N T R O D U C T I O N  
Numerous studies (Hinze 1955; Vermeulen 1955; Sprow 1967a; Chen& Middleman 1967; Mlynek 
& Resnick 1972; Shiloh 1970; etc.) have been devoted to the study of drop size distribution and 
average drop size in dispersed systems. Most efforts were aimed at determining the functional 
relationship between the physical properties, operating conditions, and drop size distribution in 
agitated two-phase, liquid-liquid, systems. 

Hillestad & Rushton (1966) presented a 'simulation' model whereby equisized drops 
containing a reactant coalesced with identical drops containing another reactant, and separated 
immediately to their original sizes. The reaction rate was studied, assuming complete mixing in 
the coalescence stage. The coalescence probability of all the drops was assumed to be identical. 
Shah & Ramkrishna (1973) utilized the integro-differential massbalance technique to calculate the 
time dependent reaction rate in a dispersed phase which contained one rectant while the other 
rectant was in the continuous phase. Spielman & Levenspeil (1965) utilized the Monte Carlo 
technique to analyse two-phase dispersion flow through a pipe. The model enabled the drop 
distribution along the pipe to be calculated. Shiloh (1970) utilized the Monte Carlow technique to 
extend Hillestad and Rushton's approach to a drop population of a nonuniform size which is 
affected by the hydrodynamics of the system. However, only a small localized population could 
be analysed to yield the local size distribution. Zeitlin (1970) and Zeitlin & Tavlarides (1972) 
extended Spielman and Levenspiel's approach to a mixing vessel. Nonuniform drops were 
treated in a grid representing a vertical cross-section through the center of the vessel. The motion 
of the drops was controlled by the hydrodynamics of the system. However, the grid mesh size 
was, by necessity, too large for a true representation of the system. 

Shiloh et al. (1971, 1972, 1973, 1975) studied a three-phase system in which crystallization 
occurs in a saturated aqueous phase while being dispersed in an organic continuous phase. The 
'drops', consisting of mother liquor and crystals, are denoted as conglomerates. The inert 
continuous phase liquid enables to maintain a constant temperature for the crystallization 
process. As shown by Shiloh et al. operation with this three-phase crystallization system allows 
good control over the nucleation and crystal growth rate. Crystals which are 1.8 times larger than 
those produced in equivalent two-phase crystallizers can be obtained. Obviously, the 
performance depends on the rate of coalescence of the conglomerates with the feed stock, i.e. the 
feed droplets of the mother liquid which are continuously introduced into the system (while the 
conglomerates and the solids within them are continuously extracted from the system). 

This study is aimed at developing a simulation model which will describe the hydrodynamics 
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of two and three-phase systems, and form the basis for the study of the kinetics of the 
three-phase crystallization system. The model, based on the Monte Carlo technique, was 
constructed in two stages. 

First, a model for analysing the hydrodynamics of a two-phase mixing system was developed 
to determine the average drop size and drop size distribution from the given physical properties 
of the system and the operating parameters. 

Second, the two-phase model was extended to account for the presence of the solid crystals in 
the dispersed phase and to calculate the size distribution and average diameter of the 
conglomerates, the crystals and the free drops in the system. 

THE SIMULATION MODEL FOR THE TWO-PHASE SYSTEM 

The two-phase system is contained in a cylindrical mixing vessel equipped with baffles. The 
two-phases are immiscible and the dispersed phase occupies but a small fraction of the total 
volume of the fluid in the system. As mixing proceeds, the motion of the impeller imparts 
momentum to the two-phases and the dispersed drops may collide, coalesce and/or break. Under 
steady state conditions the break-up and coalescence rates are balanced and the drop-size 

distribution (and average drop size) in the system is practically constant. The construction of a useful 
simulation model requires the stipulation of a number of assumptions and simplifications: 

1. Angular symmetry is assumed. This enables the system to be described as a plane cutting 
the container across its center, thus yielding a planar two-dimensional system. 

2. Assuming a mirror symmetry defines the borders of the system as the vertical wall of the 
vessel and the axis of the impeller, the fluid interface and the bottom of the container (figure 1). 

3. Following Zeitlin (1970, 1972) the vessel is divided into two operating regions: a mixing 

region and a coalescence region. Their relative proportions are determined by the velocity field 
(see assumption 13 below). 

4. In the planar two-dimensional presentation, a drop is represented by a circle. 
5. Two neighboring drops which have at least one point of contact define a collision event. 
6. The drops in the system may be stable until they reach a certain maximum size. The 

maximum drop diameter dm~x is given by the following correlation: 

,c 
din,,= K \pc /  NI2"D °'8 [1] 

where K represents a characteristic constant of the system; tr represents the interfacial surface 
tension between the two fluids; pc denotes the density of the continuous phase; ~b represents the 
dispersed phase hold-up; N represents the r.p.m.; D the diameter of the agitator and c = 0.21 for 
4~ < 0.008, c = 0.29 for 0.008 < 4~ < 0.07, c = 0.3 for 0.07 < ~b < 0.15, c = 0.37 for 0.15 < ~b < 0.27. 

Interface 

Bottom 
Figure 1, Vertical cut along the center of the system. 
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The values of c were derived from the experimental data of Brown & Pitt (1972). Essentially similar 
correlations are given by Hinze (1955) and Vermeulen et al. (1955). 

7. Following Levich (1%2), we assume that a minimum drop size exists in the system. This 
minimum drop size is mainly produced in the mixing region and is given by the following 
correlation 

(_~__~ ) ~/4 i OS vc3/" N- 3/4 D- '/2( m ) d.,i~ = = 33.74 x [2] 

where E is a specific power input into system, and v is the kinematic viscosity. 
8. The mixing region is characterized by drop break-up. Every break-up is binary, forming a 

pair of random-sized but complementary drops. Each drop can be divided into 2 n droplets. It is 
assumed here that n~x = 2, i.e. large drops will only break twice. Smaller drops may only break 
once, or not at all. Since drops smaller than d~n cannot be formed, any 'break-up' which leads to 
values smaller than d,~, is 'cancelled'. 

9. The coalescence region is characterized by coalescence as well as break-up of the drops. 
10. If a drop which is formed by coalescence is larger than the stable maximum drop size in 

the system, it will immediately break into two complimentary random parts, each smaller than the 
stable maximal size. 

ll.  The probability for break up of drops smaller than the maximum stable drop size is 
proportional to the square of the drop size (related to the maximum stable drop size in the 

d / d m x  (Zeitlin 1970). system), i.e. to 2 2 
12. The coalescence rate between drops is given by the correlation of Hillestad & Rushton 

(1%6): 

R, = 3.77 × 10 - '°.  N °m. D °sl • T -°2. th •/zc -°gs • u f  °2"" p:23.0.,.74, [3] 

Rd = 33.54 x 10 .6. N -3"5. D -7'7. T 5"°~. cb 1"58./zc -°'26 •/zu -1'3 [4] 

where the coalescence rate R is expressed as (100×) the ratio of the dispersed phase volume 
which coalesces in a second to the total volume of the dispersed phase; N is given r.p.m.; T is the 
diameter of the dispersed phase; N is given in r.p.m.; T is the diameter of the vessel, (in ft) and/xc 
and p~n denote the viscosity of the continuous and dispersed phase, respectively. 

Equation [3] applies when coalescence rate increases with the mixing rate, while [4] applies 
when the coalescence rate decreases with the r.p.m. The criteria for choosing either [3] or [4] is 
given by the critical Weber number, as given by Hillestad & Rushton (1%6): 

Wec~i, = 0.343 10°'°751r/5°I2Re°75 [5] 

where We =-D3N2pc/0- and Re-D2Npc/l~c. Thus, [3] is used when the calculated Weber 
number of the system is smaller than the critical Weber number. Equation [4] is used when the 
critical Weber number is smaller than the Weber number of the system. Obviously both equations 
apply when Wesy,tem = Wecrit. 

13. The motion of the drops in the system is determined by two vectors: (a) The continuous phase 
velocity vector u, which is defined by the following type equations proposed by Zeitlin (1970): 

uz = K~/I , (N, D, T, HI, [6] 

u,= K2g~(H,T)g2(N,D, T,H) [7] 

where z and r are the vertical and radial coordinates and H is the height of the fluid in the vessel. 
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(b) The velocity vector V describing the settling or buoyancy of a drop, as given by Love 
(1965): 

IV I = 29.05. Ipc - pal °5~" (d) °7 
p,.o,5./x o,, (m/sec) [81 

The local velocity of a drop is calculated by combining the above vectors and its motion is 
therefore defined according to its position in the vessel. 

E X T E N S I O N  T O  T H E  T H R E E - P H A S E  S Y S T E M  

The simulation model for the two-phase system has been extended to account for the 
crystallization process in the three-phase system. For lack of functional relationships between 
the various parameters, the following additional data and stipulations were used. These relate to 
the particular system of a saturated aqueous Na2SO4 solution which crystallizes while dispersed 
in kerosene, as experienced by Shiloh (1970): 

1. The diameter of the conglomerate in the system is one order of magnitude larger than that 
of the crystal free drops. Hence, it is assumed that the maximum stable conglomerate linear size 
is 10 times larger than the maximum stable drop size in the system. 

2. The rate of coalescence between the conglomerates is 16 times larger than that between the 
free drops in the system. 

3. The rate of coalescence between drops and conglomerate is 3 times larger than that of the 
free drops coalescing between themselves. 

4. Crystal growth rate is constant and relates to the linear growth of the crystal. 
5. The nucleation rate is constant at a given temperature and volume of the system. 
6. The conglomerates' motion may be described as the motion of drops by utilizing [6]-[8] and 

by neglecting the slip velocity between the conglomerates and continuous phase. 

The calculation procedure 
The general flow chart for the simulation model is presented in figure 2, and only the special 

features of the model which affect the calculation procedure will be elaborated here. 
Machine limitations and computation time restrict the Monte Carlo technique to a limited 

'sample size', or number of 'drops', participating in the stochastic process considered here. 
Clearly, the number of drops chosen represents a compromise between the computation time and 
expected accuracy. Some 450 drops were found to represent the best compromise, and increasing 
this number to 2000 drops yields an insignificant (0.5%) change of the results. 

Shiloh (1970) related the finite number of drops samples in the model to a local region in the 
vessel. Zeitlin (1970) related his sampled drops to the whole vessel and 'operated' on wide 
arbitrary grid. Here, the sampled drops are 'placed' in the grid so as to maintain the true dispersed 
phase hold-up of the system, and the distance between the drops in the model corresponds to the 
real system. This implies that the dimensions of the vessel must be 'scaled down' so that the given 
dispersed phase will fill the matrix which fits the 'scaled down' boundaries of the vessel. In 
practical terms this procedure means that the chosen sample of drops is divided between the 
mixing and coalescence regions in proportion to their relative areas in the plane of operation. 

The coalescence rates are given by [3] or [4] (modified for the three-phase system by the 
above-mentioned additional data), and a 'cycle' is arbitrarily defined as a given number of 
coalescences. The stochastic process is thus allowed to proceed until this cycle is completed, i.e. 
the number of calculated coalescences in the model reaches that predicted by utilizing the above 
equations. To assure steady state, the cycles are repeated until the size distribution is practically 
constant. For the continuous system the given flow rates are maintained by introducing (or 
extracting) particles to or from the system at the end of each cycle. Also, if applicable, new 
nucleates are introduced and allowance is made for crystal growth before starting a new cycle. 
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Figure 2. General flow chart for the simulation model. 

RESULTS AND DISCUSSION 

The calculated results were compared to the following experimental data which appear in the 
literature. 

(a) Batch systems 
1. Shiloh (1970): water dispersion in kerosene, 
2. Brown & Pitt (1972): kerosene dispersed in water, 
3. Vermeulen et al. (1955): water dispersed in kerosene, 
4. Sprow (1967): isobutyl ketone dispersed in salt water, 
(b) Continuous systems 
5. Setzer & Treybal (1963): isobutanol dispersed in water, 
6. Shiloh et al. (1970, 1975): aqueous solution of Na2SO4 dispersed in kerosene. 

As seen from figures 3-6 the difference between the calculated and the experimental results 
for the batch systems is smaller than 20%. The difference for the continuous system, figure 7, was 
within 25%. The latter is probably due to the fact that some experimental data were obtained 
before the systems reached dynamic equilibrium. 

It is important to note that the agreement between the calculated and experimental results 
hinges upon the proper choice of. the numerical constant K in [1]. This value is characteristic of 
the experimental system under consideration and must be determined experimentally for each 
system under consideration. The values, calculated independently for each systems, are 
summarized in Table 1. 
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Table 1. Summary of the proportionality coefficient K used to calculate the maximum 
diameter in [1] 

Reference Type of system K Values 

Shiloh (Batch) (1970) 
Brown & Pitt (Batch) (1972) 
Vermeulen (Batch) (1955) 
Sprow (Batch) (1967b) 

Water in kerosene 0.972 
Kerosene in water 0.972 
Water in kerosene 0.261 
Iso-butyl ketone in salt 1.898 
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Figure 3, Comparison of simulated data and experimental data of Shiloh (1970). Mean drop diameter vs. 
impeller speed. 
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Figure 4. Comparison of simulated data and the experimental data of Brown & Pitt (1972). Mean drop 
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Figure 5. Comparison between simulation model and Vermeulen's (1955) experimental data. Mean diameter 
vs. impeller speed. 
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Figure 6. Comparison of Sprow's experimental results (1967) with simulated results. Average drop diameter 
vs. impeller speed. 

Although it is probably safe to assume that the proportionality coefficient is some function of 
the physical properties of the system, available data are insufficient to determine this 
proportionality factor independently without reference to an experimental system. 

As seen from figures 3-6, the average drop size decreases with the increase in the impeller 
velocity. Also, the average drop size increases with the increase of the dispersed phase hold-up. 
With reference to figure 6, it is interesting to note that the simulation model, which assumes two 
major regions in the container (a mixing region and a coalescence region), yields results which 
correspond to the average of the experimental results which were measured in the two regions in 
the continer (the mixing region and the 'dead' coalescence region). 

Although numerous studies have been conducted in continuous dispersed phase systems, only 
a few report data suitable for comparison to this model. Inspection of the data of Setzer & 
Treybal (1963) shows that where the residence time of the fluids in the container is relatively long, 
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Figure 7. Comparison of impeller speed effect on average drop diameter in Setzer& Treybal's work (1%3) 
and the simulation model. 

i.e. low flow rates (0.080 kg/sec), the average drop size dependence on the impeiler's velocity is 
similar to the batch system (slope of - 1.22 for the continuous system as compared to - 1.2 for the 
batch system). However, as the residence time decreases (flow rate of 0.239 kg/sec) the 
dependence of the average drop size on the flow rate increases. 

With reference to figure 7, it is noteworthy that the presentation of the data for ~b = 0.192 of 
Setzer& Treybal (1963) is probably erroneous (there seems to be a disagreement between their 
reported average drop sizes and the values calculated from the experimental specific area data), 
and the data presented here is based on recalculating the sizes form the original experimental 
data. 

McCoy & Madden (1969) studied the time dependence of the drop size distribution. Figure 8 
represents the experimental unsteady distribution and the steady state distribution calculated in 
this work. Obviously, care must be excerised when data are collected from continuously 
operating systems. 
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Figure 8. Experimental results of McCoy & Madden (1%9) for unsteady distribution vs. steady state 
simulated distribution. 
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Testing the model for the three-phase system was somewhat limited due to the absence of 
semi-empirical correlations for the functional relationships between the many parameters of the 
system. The comparison was based on the scanty experimental values and quantitative 
assumptions reported by Shiloh et al. (1973). The agreement between the calculated results and 
the experimental data shown in figure 9 is quite satisfactory. 

Though testing the model by relating to real systems and available experimental data is 
satisfactory, the analysis brings out the need for additional experimental data from which the 
functional relationships between the various parameters in the system can be reliably obtained. 
As a direct consequence of this study it is recommended that additional data be obtained for an 
extended analysis of the three-phase systems. In particular, data relating the size of the 
conglomerates and the coalescence rate between drops and conglomerates as a function of the 
various operating parameters are required. Nucleation and crystal growth rate data for different 
systems are also needed for reliable description of three-phase systems. 
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Figure 9. Impeller speed effect on conglomerate size. Comparison of Shiloh's (1973) experimental data with 
simulated data. 

CONCLUSION 

A relatively simple simulation model for two and three-phase systems has been developed. 
The model successfully describes the hydrodynamic characteristics of the two and three-phase 
systems and can accomodate additional data and correlations to predict the kinetics and 
crystallization in three-phase crystallizers. However, additional work is required to obtain such 
data. 
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